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SUMMARY

A numerical investigation of laminar flow over a three-dimensional backward-facing step is presented with
comparisons with detailed experimental data, available in the literature, serving to validate the numerical results.
The continuity constraint method, implemented via a finite element weak statement, was employed to solve the
unsteady three-dimensional Navier–Stokes equations for incompressible laminar isothermal flow. Two-
dimensional numerical simulations of this step geometry underestimate the experimentally determined extent
of the primary separation region for Reynolds numbersRe greater than 400. It has been postulated that this
disagreement between physical and computational experiments is due to the onset of three-dimensional flow near
Re � 400. This paper presents a full three-dimensional simulation of the step geometry for1004Re4 800 and
correctly predicts the primary reattachment lengths, thus confirming the influence of three-dimensionality.
Previous numerical studies have discussed possible instability modes which could induce a sudden onset of
three-dimensional flow at certain critical Reynolds numbers. The current study explores the influence of the
sidewall on the development of three-dimensional flow forRe > 400. Of particular interest is the
characterization of three-dimensional vortices in the primary separation region immediately downstream of
the step. The complex interaction of a wall jet, located at the step plane near the sidewall, with the mainstream
flow reveals a mechanism for the increasing penetration (with increasing Reynolds number) of three-dimensional
flow structures into a region of essentially two-dimensional flow near the midplane of the channel. The character
and extent of the sidewall-induced flow are investigated for1004Re4 800.# 1997 by John Wiley & Sons,
Ltd.
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1. INTRODUCTION

As a subject of fundamental importance in fluid mechanics, flow separation has been the focus of
intensive study for many years. To aid in experimental and computational investigations of this
phenomenon, a set of simple geometric configurations has been developed as representative test beds,
including (a) flow in a pipe with a sudden expansion, (b) flow in a pipe with an obstruction such as an
orifice, (c) flow over an obstruction (either a step or a thin fence) in a channel and (d) flow in channel
with a sudden expansion (backward-facing step). Within each base configuration, variations in
boundary conditions and the addition of heat and=or mass transfer serve to further broaden the
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problem class. Among these four basic configurations the backward-facing step has become a very
popular benchmarking and validation test problem for computational fluid dynamics (CFD)
simulations owing to its simple geometry and the availability of quality experimental data. It is the
objective of the current study to investigate laminar flow over a three-dimensional backward-facing
step. Using the step geometry and flow conditions reported by Armalyet al.,1 direct comparisons with
the physical experiments are made as a validation of the numerical results.

Flow separation can be defined as a region of recirculating flow adjacent to a solid boundary. The
positions for detachment and reattachment of the ‘separation bubble’ are delimited by contours of
zero vorticity near the boundary. Within the separation bubble the flow is characterized by
recirculating vortices and flow reversals. A necessary but not sufficient condition for the onset of flow
separation in both boundary layer and fully viscous flows is the presence of an adverse pressure
gradient in the flow field near the outer boundary of the separation bubble, where ‘adverse’ refers to
an increasing pressure in the direction of the main flow stream.2

Axisymmetric flow with a sudden enlargement has been the subject of computational studies by
Baker,3 Doneaet al.,4 Zienkiewiczet al.,5 and Fang and Paraschivoiu.6 Laminar experimental data
for this configuration were obtained by Leone and Gresho7 and Carvalhoet al.8 Turbulent and
laminar stratified channel flow with a backward-facing step has been studied computationally by
Oliver,9 Leone,10 Gartling11 and Papanastasiouet al.12 Kaiktsis et al.13 investigated the onset of
three-dimensionality and transition to turbulence for flow over a backward-facing step using a high-
order-accurate mixed spectral=spectral element method. For most of their cases, periodic boundary
conditions were applied to the sidewalls of the models, thus simulating a channel geometry infinite in
extent in the cross-stream direction. In the absence of sidewall effects, Kaiktsiset al.13 found that the
‘onset of three-dimensionality occurs at the boundaries between the primary and secondary
recirculating zones with the main channel flow; . . .’. Strong secondary instabilities were observed in
the shear layers, mainly due to an instability emanating from the step corner.

The present study has concentrated on isothermal three-dimensional internal laminar flows over a
backward-facing step. Two experimental investigations have been used extensively in validation
efforts quoted in the literature, specifically the laminar data of Denham and Patrick14 and the laminar
and turbulent data of Armalyet al.1

Computational simulations of the step geometry used by Denham and Patrick14 have consistently
predicted longer reattachment lengths for the primary separation bubble than those obtained
experimentally.15,16This discrepancy has been attributed to the construction of the test section, which
included an asymmetric flared device along the lower wall of the channel upstream of the step. Ghia
et al.16 observe that, since the resulting inlet section was relatively short, the velocity profiles
obtained by Denham and Patrick14 just before the step indicate an asymmetric distortion from the
parabolic profiles typically assumed in computational studies. The severity of this distortion increases
with increasing Reynolds number.

An open-loop air-driven flow channel was used by Armalyet al.1 to measure velocity distributions
and reattachment lengths downstream of a backward-facing step (see Figure 1). Results are presented
for laminar, transitional and turbulent flow of air with a Reynolds number range of70 < Re < 8000.
The channel height upstream of the step,h, was 5�2 mm and the downstream channel heightH was
10�1 mm, giving an expansion ratioH=h � 1�9423 and a step heightSof 4�9 mm. The channel width
W was 180 mm andW=S� 36�735. The test section provided a 200 mm straight channel approach to
the backward-facing step and a 500 mm long channel downstream of the step. Operating in a
forward-scattering mode, the laser Doppler anemometer was set up to measure only the streamwise
velocity component.

The reattachment lengths of the separation regions were measured by scanning the lower and upper
walls in the streamwise direction at constant and known elevations. To determine the reattachment
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length, the position of the zero-mean-velocity line was measured. The points of detachment and
reattachment were taken as the extrapolated zero-velocity line down the wall.

Measurements of the reattachment length for the primary separation bubble,x1 in Figure 2, just
downstream of the step on the lower wall allowed the identification of the laminar (Re < 1200),
transitional (1200 < Re < 6600) and turbulent (Re > 6600) regimes. The Reynolds number is
evaluated with a reference velocity equal to two-thirds of the maximum velocity measured 10 mm
upstream of the step and a reference length equal to twice the upstream channel height (i.e. the
hydraulic diameter of the upstream channel). For the laminar regime the separation length increases
non-linearly with the Reynolds number. The transitional flow regime is characterized by a sharp
initial decrease in the reattachment length, followed by a continued gradual but irregular decrease to a
minimum at a Reynolds number of approximately 5500. BeyondRe� 6600 the reattachment length
ceases to be a function of the Reynolds number. An additional separation bubble was measured along
the floor of the channel downstream of the primary separation,x2 andx3 in Figure 2. This secondary
bubble disappears above a Reynolds number of 2300. A secondary separation region was also
observed along the upper wall downstream of the step,x4 and x5 in Figure 2. It develops in the
laminar regime (forRe > 400) and remains throughout the transition regime. The length of this upper
separation bubble initially increases with increasing Reynolds number and then gradually decreases
until it disappears above a Reynolds number of approximately 6600.

To determine the two-dimensionality of the flow, spanwise velocity profiles at various constant
elevations were measured at selected Reynolds numbers. At Reynolds numbers smaller than 400 the

Figure 1. Backward-facing step geometry

Figure 2. Separation regions identified by Armalyet al.1
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flow was predominantly two-dimensional. Within the Reynolds number range of400 < Re < 6600
the flow downstream, and in the immediate vicinity of the step, was found to be three-dimensional.
Armaly et al.1 also noted that ‘within and around the transition flow regime longitudinal vortices
develop and destroy the two-dimensional character of the flow’. These vortices were shown to begin
to develop in the laminar region atRe � 800.

2. COMPUTATIONAL EXPERIMENTS

2.1. Conservation law system

The conservation law system employed in this study consists of the physical principles of
conservation of mass and momentum for a viscous isothermal fluid. Applying the incompressibility
condition (constant density), the non-dimensional divergence form of the equation set representing
this Navier–Stokes conservation law system is
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where, and throughout this paper, repeated italic indices imply summation over the dimension of the
domainO. The requirement in (1) for a divergence-free or solenoidal velocity field represents a
differential constraint on all admissible solutions to the momentum equations. In (1) and (2),ui�xj; t�
is the velocity vector resolution of the flow,t is time, P�xj; t� is the kinematic pressure (pressure
divided by the constant densityr), dij is the Kronecker delta andRe is the Reynolds number. With
superscript ‘*’ indicating a dimensional state variable and subscript ‘ref’ denoting suitable
dimensional reference scales, the scaling rules used to non-dimensionalize (1) and (2) are
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wheren is the kinematic viscosity (assumed constant). The Navier–Stokes conservation law system is
defined in the domainO with boundary closure@O � G1 � G2 � . . . � Gi, where theGi comprise
disjoint boundary segments. Closure is complete upon definition of well-posed initial and boundary
conditions.

2.2. Finite element weak statement CFD algorithm

A newly verified incompressible Navier–Stokes algorithm called the continuity constraint method
(CCM) was used to discretely enforce the continuity differential constraint (1) while solving the
momentum equations.17,18 The CCM theory is implemented by a finite element spatial
semidiscretization of a Galerkin weak statement in concert with ay-implicit time integration
scheme, a consistent mass matrix and equal-order interpolation (i.e. the finite element equivalent of a
non-staggered mesh) of all state variable members. Iterative cycling within a time step with the CCM
constraint function provides an approximate (and measurable) enforcement of conservation of mass.
Once a converged solenoidal velocity field is obtained, the determination of the (genuine) kinematic
pressure employs a pressure Poisson weak statement equation.19

The CCM finite element implementation is intrinsically devoid of artificial diffusion. Control of
discretization-induced dispersion error is maintained in the CCM construction via a Taylor weak
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statement (TWS) extension of the Galerkin weak statement formulation for the momentum equations.
The TWS expression was derived by Noronha and Baker20 to be
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and is added to theith momentum equation. Hereb5 0 is the user-selectable TWS dissipation scale
factor, he is an element-based mesh measure with the dimension of length andj

�uje is an element-
based reference speed.

A generalized conjugate gradient technique, called the restarted generalized minimal residual
(GMRES(m)) iterative method21 with diagonal scaling as a preconditioner, was used to solve the
sequence of non-symmetric sparse linear algebra problems produced by the selected quasi-Newton
linearization of the discretized weak statements for the momentum equation. A restart value of
m � 10 (where m is the selected dimension of the Krylov subspace) was found to provide an
acceptable compromise between CPU work and core memory requirements. For the symmetric
positive definite matrix statements produced for the Poisson equations for pressure and continuity
constraint function, an incomplete Cholesky preconditioned conjugate gradient iterative solver was
used.22 Details of this CFD methodology are presented by Williams and Baker,18 Bakeret al.23 and
Williams et al.24 and summarized in the Appendix to this paper.

3. RESULTS AND DISCUSSION

Two- and three-dimensional models simulating the experiments of Armalyet al.1 were developed for
the current study. The two-dimensional model, Figure 3, used anM � 4 � 11 � 1 discretization
upstream of the step andM � 87 � 20 � 1 downstream of the mesh, where all velocities in thez-co-
ordinate direction are set to zero. Exploiting the experimentally verified symmetry of the flow field,
the three-dimensional model, Figure 4, employed a central vertical symmetry plane with a mesh
discretization ofM � 4 � 11 � 24 upstream andM � 87 � 20 � 24 downstream of the step plane.
The upstream and downstream, channels are approximately one and 30 step heights long respectively.

The final meshes for the two- and three-dimensional models resulted from a mesh refinement study
that investigated the sensitivity of the solutions to (a) channel lengths upstream and downstream of
the step and (b) the mesh refinement and grading near all walls, the step plane, regions of separation
and the approach to the outflow plane. Seven stages of mesh refinement were investigated for the
three-dimensional model, starting with approximately 20,000 nodes and progressing to the final mesh
of 47,300 nodes. Using an approach length of 10 step heights, the initial two-dimensional results
indicated that a fully developed velocity profile was well established within one step height from the
inlet plane, allowing the shortening of the approach channel. The two- and three-dimensional studies
also showed that adequate mesh grading was necessary both upstream and downstream of the step

Figure 3. Mesh for two-dimensional model,M � 4 � 11 � 1 and87 � 20 � 1
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plane. Grading along the upper wall was critical in the three-dimensional model for resolving the thin
secondary separation region, and the solution became unstable if the mesh was inadequately graded
near the outflow plane.

The velocity boundary conditions for both models included no-slip conditions at all impermeable
walls, a prescribed fully developed laminar velocity profile at the inflow plane, a tangency condition
on the symmetry plane and a zero-traction Neumann condition for the outflow plane as described by
Williams.17 At the inflow plane the two-dimensional model used the standard parabolic velocity
profile and the three-dimensional model used the fully developed laminar solution for a duct with a
rectangular cross-sectional area.25 The pressure and the continuity constraint functionF were both set
to zero across the outflow plane. Except for the symmetry plane, the boundary condition for the
constraint function was homogeneous Neumann. To maintain a free-slip condition for the symmetry
plane, a non-homogeneous Neumann boundary condition forF is calculated as the solution evolves.
The pressure boundary condition was homogeneous Neumann across the symmetry plane and non-
homogeneous Neumann for the inflow and no-slip boundaries. ForRe � 100 the initial conditions for
the velocity field were a fully developed profile filling the upstream and downstream channels, where
the downstream channel profile was scaled from the upstream profile by the cross-sectional area ratio
(upstream to downstream) to provide a nominal conservation of mass att � 0�0. The initial pressure
field was calculated by the pressure Poisson equation using the initial velocity data. For subsequent
higherRe the converged solution from the previous lowerRewas used as an initial condition. For
both the two- and three-dimensional simulations, laminar steady state solutions were obtained for
1004Re4 800.

Preliminary results for the three-dimensional model indicated an instability in the computed
velocity distribution at the step plane that did not respond to remeshing. It was postulated that the
source of the instability was round-off error, produced by the significant difference in magnitude of
the three velocity components. The problem was eliminated by rotating the computational co-
ordinate system, relative to the ‘laboratory’ reference frame, through two successive Euler angles.
The first transformation was� 45� rotation about thez-co-ordinate axis, producing an�x0; y0; z0�co-
ordinate triad, and the second transformation involved a� 45� rotation about they0-co-ordinate axis
to produce�x00; y00; z00� where all computations were performed. In the new reference frame, all three

Figure 4. Mesh for three-dimensional model,M � 4 � 11 � 24 and87 � 20 � 24
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velocity components were of the same order of magnitude as measured by their respective energy
seminorms, defined by
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whereq represents any state variable andC is a normalizing constant.
A number of researchers have used the experimental data of Armalyet al.1 for computational

validation studies.1,11,16,26–36A representative sampling from the literature is presented in Table I.
The CFD formulations include a range of algorithms, such as the finite difference MAC, finite
volume SIMPLE, finite element penalty, pseudospectral and finite element least squares formulations.
The Reynolds numbers cited in the far right column are calculated using a consistent reference
velocity and length scale. As described by Armalyet al.,1 the reference velocity is the average bulk
velocity in the upstream channel (defined as two-thirds of the maximum axial velocity measured
10 mm before the step plane) and the reference length is the hydraulic diameter of the upstream
channel (defined as the twice the upstream channel height).

Primary reattachment lengths, normalized by the step heightS, are plotted as a function of the
Reynolds number in Figure 5. The two-dimensional computational data reported by various
researchers show good agreement with the experimental values up toRe � 400. AboveRe � 400 the
computational results diverge, as expected, from the experimental data of Armalyet al.1 (full line). It
has been postulated that the reason the two-dimensional solutions cease to agree with the
experimental reattachment data is the three-dimensionality of the flow.16

In Figure 6 the reattachment lengths of the primary separation region for these symmetry plane
data are compared with the experimental data of Armalyet al.1 and the three-dimensional
computational results of Kuet al.30 and Jianget al.36 The present three-dimensional results show
excellent agreement with the primary reattachment data of Armalyet al.,1 especially above the
Reynolds number at which the two-dimensional solutions begin to diverge.

Table I. Computational studies of backward-facing step

Researcher(s) Method=code Dim. Mesh Reynolds
number

Armaly et al.1 SIMPLE=TEACH 2D 45645 41250
Kim and Moin26 Chorin’s projection method 2D 1016101 100–800
Durst and Pereira27 SIMPLE with QUICK 2D 85665 10–648
Guj and Stella28 Vorticity–velocity 2D 101640 80–800
Sohn29 Penalty=FIDAP 2D 61633 100–800
Ku et al.30 Pseudospectral matrix element (PSME) 2D 297633 75–450
Ghia et al.16 Vorticity–streamfunction 2D 195633 300–1200
Thangam and Knight31 SIMPLE 2D 120661 33�3–600
Gartling11 Penalty=NACHOS II & FIDAP 2D 800640 800
Ikohagi and Shin32 SMAC 2D 70621 100–800
Cabuket al.33 Preconditioned pseudocompressibility 2D 121621 100–600

Ku et al.30 Pseudospectral matrix element (PSME) 3D 426366 48 75–450
Ikohagi et al.34 SMAC 3D 756356 31 1000
Steinthorssonet al.35 Advection upwind splitting

method=TRAF3D
3D 1616656 30 100–389

Jianget al.36 Least squares finite element 3D 826326 20 100–800
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To demonstrate the two- and three-dimensional character of the flow below and aboveRe � 400
respectively, Armalyet al.1 reported measured spanwise velocity profiles forRe � 397 and 648. For
Re � 397 the spanwise scans were taken at an elevation 7�5 mm above the floor of the downstream
channel, Figure 7(a). The present CCM results from threex-stations, Figure 8(a)–8(c), confirm that
the flow is essentially two-dimensional except directly adjacent to the sidewall. Atx=S � 6�22, which
is upstream of the measured primary reattachment point, the two-dimensional character of the flow
field is fully confirmed by the present results over a vertical span. However, the magnitude of the
computed axial velocity exceeds the experimental value aty � 7�5 mm. The low level of the
experimental velocity is predicted by the CCM to occur 2 mm above the 7�5 mm elevation as
graphed in Figure 8(a).

The CCM computational results are in very good agreement with the experimental axial profile at
x=S � 14�3, downstream of the reattachment of the primary separation. Further downstream at
x=S � 18�8 the experimental profile shows a significant increase in average velocity, while the
computational profile indicates a slight decrease (compare 8(b) and 8(c)). At allx-stations plotted, the
three-dimensional nature of the flow near the sidewall is substantially resolved in the present results,
which was apparently beyond the detection range of the experimental configuration. As will be

Figure 5. Primary reattachment length versusRe, two-dimensional solutions

Figure 6. Primary reattachment points on three-dimensional symmetry plane verusRe
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Figure 7. Locations of transverse planes for spanwise axial velocity profiles

Figure 8. Comparison of spanwise velocity distributions,Re � 397
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shown, these three-dimensional structures near the sidewall have a dominating influence on the
central flow field at higher Reynolds numbers.

For Re � 648, experimental spanwise scans were taken at fourx-stations and for two elevations,
Figure 7(b). The data of these scans are graphed and linearly interpolated in Figure 9 fory � 7�5 mm
and in Figure 10 fory � 2�35 mm. Armalyet al. report that at this Reynolds number the flow is fully
three-dimensional as confirmed by the variation in axial velocity across the lateral span of the flow
field. In general, very good agreement between the present CFD simulation and the experimental data
at all x-stations and at both elevations is verified. The persistent flow reversals near the sidewall,
missed in the experiments owing to their limited range, are an indication of significant flow
separation, hence reversal, all along the duct sidewall forx=S 4 18.

The data of Armalyet al. also included axial velocity profiles at the midplane of the channel for a
range of Reynolds numbers at differentx=S locations. Visual comparisons of the experimental
velocity data forRe � 389 (Figure 16 of Reference 1) with the present results in Figure 11(a) showed
good agreement. Velocity profile data from the present results forRe � 397, 648 and 800 are also
presented in Figures 11(b)–11(d) respectively. The elevation locations for the spanwise axial velocity
sans are denoted by the circles in Figures 11(b) and 11(c).

Contours of negatively directed axial velocity are presented in Figures 12–14 to aid in visual
interpretation of the primary and secondary separation regions on the lower ‘floor’, upper ‘roof’ and
sidewall of the channel. The graphed floor, roof and sidewall CFD data are those on the first interior
plane of nodes, adjacent to the corresponding no-slip boundaries. In these figures the roof has been
opened like a book about the duct roof centroidalx-axis for visualization. AtRe � 389, Figure 12, the
flow is confirmed nominally two-dimensional over approximately the central two-thirds of the

Figure 9. Comparison of CFD and experimental spanwise velocity profiles,y � 7�5 mm Re � 648
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channel span. No secondary region has yet developed on the roof near the symmetry plane; however,
a significant three-dimensional separation region exists along the sidewall axial corners, extending
well downstream of the reattachment line for the primary separation region. In the three-dimensional
numerical study of this same step geometry by Steinthorssonet al.35 a large region of reversed flow in
the immediate vicinity of the sidewall was also observed forRe � 389; however, results forRe > 389
were not reported.

At Re � 648 and 800, Figures 13 and 14 respectively, the primary separation bubble continues to
grow, as does the penetration of the sidewall corner separation regions axially and out into the main
flow field. The secondary separation bubble on the roof near the symmetry plane is very thin
(approximately 1 mm) and does not connect with the sidewall separation region forRe4 800.

Another enhancement to improved visualization of the flow field is the computation of ‘oilflow’
streaklines, as calculated from the projection of the velocity field onto horizontal planes near the floor
and the roof. ForRe � 800 the full lines with arrows, Figure 15, are such streaklines demonstrating
the significant three-dimensional flow character around and within the primary and secondary
separation regions. The pronounced vertical axis vortex in the flow near the roof, Figure 15(b), is very
shallow (as will be examined further using a Lagrangian particle track in this region).

Flow field enlargements near the sidewall atRe � 800 are projected in Figure 16 onto transverse
planes, located atx1=S � 7�72 and 18�37 step heights from the step. These transverse projections
clearly show the strong three-dimensionality of the flow involving a wall jet at the step and complex
vortex structures that extend well beyond the region of reverse flow, in the upper and lower corners of
the channel, and into the central flow field. (The perspective graphs are included to provide a sense of
the location of the transverse planes.) The full curves separate the regions of positive and negative

Figure 10. Comparison of CFD and experimental spanwise velocity profiles,y � 2�35 mm Re � 648
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axial velocity (�u1) in each graph. Forx1=S � 18�37 there is evidence of a developing longitudinal
vortex as discussed by Armalyet al. for Re � 800.

Lagrangian particle tracks were calculated from steady state velocity vector solutions using a
modified Euler integration scheme suggested by Mallinson and de Vahl Davis.37 For a particle release
point in the step plane of (5, 5�1, 89) which is 1 mm away from the sidewall and 0�2 mm above the

Figure 11. Present results of axial velocity profiles at symmetry plane�z � 0� at differentx=S locations
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top of the step, the tracks forRe � 389, 648 and 800 are shown in Figures 17–19 respectively. The
diameter of the particle symbol (the ‘bubble’) is linearly related to its elevation above the channel
floor, while the distance between each bubble represents a constant elapsed time interval. The three
particle tracks within the primary separation region reveal the general shape of a vortex with its axis
parallel to the channel floor and normal to the mainstream flow direction. The particles move along a
spiral path towards the symmetry plane where they are eventually caught up in a predominantly two-

Figure 13. Separation region ‘footprints’,Re � 648

Figure 14. Separation region ‘footprints’,Re � 800

Figure 12. Separation region ‘footprints’,Re � 389
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dimensional recirculating flow and then exit the separation bubble into the mainstream flow. With
increasing Reynolds number the extent of the two-dimensional flow region decreases and the
penetration of the three-dimensional vortex moves closer to the symmetry plane. In Figure 20 the
particle release point is near the vertical axis vortex shown in Figure 15(b). Note that the bubble
diameter is generally uniform, confirming the shallowness of the vortex structure at this location,
before it descends and moves downstream.

Ghiaet al.16 have suggested two possible mechanisms for what they termed an ‘abrupt change’ in
flow structure from two- to three-dimensional flow when the secondary separation bubble first
appears on the upper wall atRe � 400. They note that two-dimensional boundary layer flows, subject
to a locally destabilizing concave curvature of the boundary, are susceptible to a Taylor–Go¨rtler
vortex instability. Spanwise-periodic counter-rotating pairs of vortices with axes aligned with the
main flow direction are formed as a result of this instability. It has been suggested that such a vortex
instability could be a common phenomenon near two-dimensional separation points. Ghiaet al.16

postulate that the appearance of the secondary separation bubble on the upper wall provides the
necessary conditions for the formation of Taylor–Go¨rtler vortices, and they propose ‘that the
additional mixing which would accompany a developing Taylor–Go¨rtler instability would tend to
delay the upper wall separation; thus causing the secondary separation point,x4, to occur farther
downstream than would be predicted on the basis of a strictly two-dimensional analysis’. The delay
of the detachment of the secondary separation decreases its blocking effect and allows the
development of a longer reattachment length for the primary separation bubble than would be
predicted in the absence of this three-dimensional disturbance.

The alternative mechanism suggested by Ghiaet al.16 involves the growth and interaction of the
boundary layers on the sidewalls of the test section. They rejected this mechanism based upon their
assumption that the effect would tend to decrease with increasing Reynolds number owing to a
thinning of the sidewall boundary layers.

The present results support the contention that the formation and structure of the upper separation
region are a critical element in explaining the divergence of two-dimensional simulations from the
experimentally observed primary reattachment lengths. Comparison of the two- and three-

Figure 15. Oil flow streaklines atRe � 800 on horizontal planes: (a) flow near floor; (b) flow near roof
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dimensional results shows that a much thicker separation bubble is formed in the two-dimensional
simulation which, once established, produces a relatively stationary blockage of the channel. This
blocking effect serves to prevent the growth of the primary reattachment length with increasing
Reynolds number.

Armaly et al.1 present the spanwise velocity profiles shown in Figures 8–10 as evidence for their
contention that the flow is two-dimensional forRe < 400 and three-dimensional forRe > 400. There
is generally good agreement between the present results and their experiments forRe � 397 and
excellent agreement forRe � 648. The present computational results, however, reveal details of the
flow structure, unavailable to Armalyet al.,1 which suggest a third mechanism for the development of
strongly three-dimensional flow with increasing Reynolds number.

Figure 16. Flow field near sidewall projected onto transverse planes,Re � 800
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A wall jet, attached to the sidewall as shown in Figure 16, forms at the step plane and grows in
strength with increasing Reynolds number. Observed at the lowest Reynolds number simulated
(Re � 100), this wall jet, interacting with separation regions along the upper and lower corners of the
sidewall, is the source of three-dimensional vortices in the vicinity of the sidewall which penetrate the
central flow stream within the primary separation region. The particle tracks in Figures 17–20 reveal
a fascinating picture of very complex three-dimensional flow structures. Even atRe � 389 the
tracking particle, released at the source of the wall jet in Figure 17, shows a spiralling three-
dimensional path from the sidewall to the central symmetry plane. Nearing the symmetry plane, the
particle joins the essentially two-dimensional primary separation region. As the Reynolds number
increases, the wall jet strengthens and the point at which the tracking particle is caught up by the
central separation region moves closer to the symmetry plane, Figures 18 and 19. Rather than
thinning, the separation region along the sidewall continues to develop with increasing Reynolds

Figure 17. Lagrangian particle track forRe � 389
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number. Complex three-dimensional vortices can be observed along the sidewall, Figure 16, and the
roof, Figure 20. In summary, the present results show that the transition from two- to three-
dimensional flow is not an abrupt change but rather a continuous penetration of three-dimensional
flow, fed by a wall jet, from the sidewall to the central symmetry plane.

4. CONCLUSIONS

A numerical investigation of laminar flow over a three-dimensional backward-facing step has been
carried out. Comparisons with the detailed experimental data of Armalyet al.1 served to validate the
numerical results. The continuity constraint method, implemented via a finite element semidiscre-
tized Taylor weak statement, was employed to solve the unsteady three-dimensional Navier–Stokes
equations for incompressible laminar isothermal flow. Two-dimensional simulations of this step

Figure 18. Lagrangian particle track forRe � 648
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geometry have typically underestimated the experimentally determined extent of the primary
separation region forRe > 400. It has been postulated that this disagreement between physical and
computational experiments is due to the onset of three-dimensional flow nearRe � 400. A full three-
dimensional simulation of Armalyet al.’s step geometry for1004Re4 800 correctly predicts the
primary reattachment lengths, thus confirming the influence of three-dimensionality. Previous
numerical studies22,25 have presented possible instability modes which could induce a sudden onset
of three-dimensional flow at certain critical Reynolds numbers.

The current investigation demonstrates the clear influence of the sidewall in generating three-
dimensional effects for the geometry of Armalyet al.’s experiment. Various flow visualization
techniques demonstrate the rich character of the sidewall-induced three-dimensional vortices in the
primary separation region immediately downstream of the step. The complex interaction of a wall jet,
located at the step plane near the sidewall, with the mainstream flow reveals a mechanism for the
increasing penetration (with increasing Reynolds number) of three-dimensional flow structures into a

Figure 19. Lagrangian particle track forRe � 800

1176 P. T. WILLIAMS AND A. J. BAKER

INT. J. NUMER. METH. FLUIDS, VOL24: 1159–1183 (1997) # 1997 by John Wiley & Sons, Ltd.



region of essentially two-dimensional flow near the spanwise midplane of the channel. The character
and extent of the sidewall flow have been established for1004Re4 800.

APPENDIX: CCM OVERVIEW

A new primitive variable finite element CFD algorithm, thecontinuity constraint method(CCM), has
been developed to produce approximate solutions for the unsteady Navier–Stokes equations in three
dimensions. Falling in the general class ofpressure relaxationalgorithms, the new method has its
origins in the finite difference SMAC method,38 the finite element velocity correction method39 and
developments in incompressible algorithm research at the University of Tennessee’s CFD
Laboratory.17,18

Recognition of the dual role of the pressure, both as an enforcer of the continuity constraint and as
a force in the mechanical balance law for the conservation of linear momentum,40 has been a guiding
principle in the algorithm’s development. An implicit time integration with iterative cycling within

Figure 20. Lagrangian particle track, release point near vertical axis vortex structure at roof,Re � 800
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the time step allows the two roles for the pressure to be completely separated. Specifically, a mass-
conserving potential function is used to enforce continuity while the genuine pressure, as induced by
a solenoidal velocity field, is calculated with well-posed and physically motivated boundary
conditions by the pressure Poisson equation. This separation of tasks produces a clear view of the
individual and totally distinct boundary conditions required for the continuity constraint function and
the pressure.

Additionally, the CCM employs ay-implicit time integration scheme, a consistent mass matrix, an
optional Taylor weak statement (TWS) formulation for dispersion error control and equal-order
interpolation of all state variables. Implicit time integration allows larger stable time steps compared
with explicit schemes. A consistent full mass matrix, as opposed to the ‘lumped’ mass matrix
commonly used in explicit methods, exploits the cross-coupling in the inertial terms of the
momentum and energy equations produced by the finite element semi-discretization. The TWS
theory has been employed by Baker and Kim41 to identify a multidimensional tensorial mechanism
for hyperbolic conservation law systems. The derived stability formulation was later verified as
highly effective in control of third-order dispersive error mechanisms.42 Equal-order interpolation of
the velocity, pressure and temperature state variables with trilinear and bilinear (for boundary
condition surface integrals) basis functions produces a continuous and more accurate pressure
solution.

For an implicit time integration of the momentum equations an iterative cycle within the time step
is required. During these outer iterations the CCM replaces the genuine pressure in the momentum
equations with a continuity constraint state variableCp

n�1, where the superscriptp is an iteration index
andn � 1 is the current time station. They-implicit semidiscrete momentum equations therefore have
the form

uij
p
n�1 � uijn ÿ yDt
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where0�54y4 1�0 is an implicitness parameter andDt is the discrete time step. When the genuine
pressureP is required, it is assumed computable from the pressure Poisson equation, i.e.

@

2P

@xi@xi
�

@uj
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� 0; �6�

for any uijn�1, a converged, solenoidal velocity vector field. The genuine non-homogeneous
Neumann boundary condition for (6) is
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whereGD is the union of all boundary segments where the velocities are fixed by Dirichlet data, e.g.
walls and inflow planes.

The iterative cycle in the CCM requires the solution of a Poisson equation for a continuity
constraint potential functionF. This Poisson equation has the form
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: �8�
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The boundary conditions forF on GD are homogeneous Neumann:

@F

@n

�
�
�
�

p�1

� 0 on GD: �9�

The CCM iterative solution strategy is as follows.

Time stepn � 1

1. Initialize the constraint state variable by eitherC1
n�1 � Cp�1

n or C1
n�1 � Pn.

2. Solve the momentum and energy equations implicitly foru*p.
3. Solve the Poisson equation forFp.
4. Update the approximation forCn�1 by

Cp�1
n�1 � C1

n�1 �
1
yDt

Pp

k�1
F

k
:

5. Repeat steps 2–4 until

kF
p
kE < E; convergence tolerance:

6. Advance the time step; solve the genuine pressure Poisson equation forPn�1.

Since equal-order interpolation of all state variables is employed, which is the finite element
equivalent of using a non-staggered mesh, the div-stability condition is not satisfied by the CCM. As
a result, there is a dominant dispersive error mode,moduloHh, associated withF. One significant
computational attribute of the genuine pressure Poisson solve in step 6 is that it prevents the
dispersive error from polluting the velocity and temperature solutions. Step 6 also provides the means
for establishing a basis (i.e. a continuousCl

n�1 based on the genuine pressurePn) for an
approximation ofPn�1 during the iterative cycle. Experience with the CCM has shown that the
pressure Poisson solve can be subcycled (e.g. solved every third, fourth or 40th time step) to improve
computational efficiency.

Step 5 defines thestopping testfor the outer iteration cycle in terms of the energy seminorm ofF,
defined as

kF
p
kE �

1
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�

O

@F

@xj
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dOjpn�1: �10�

By the definition ofF,
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� �ui* ÿ ui�j
p
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whereui* ÿ ui is the divergence error in the currently computed flow field, this energy seminorm ofF

can be seen to be a measure of the kinetic energy of the error in the current approximation foruijn�1.
The conservation law system constitutes a non-linear coupled set of initial value partial differential

equations (PDEs) whose solutions are constrained by the incompressibility condition. These PDEs
can be expressed in the general form

l�q� �
@q

@t
�

@

@xj
fj ÿ f v

j � � 0 on O � R
n
; t5 t0;

ÿ

�12�
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wherel�q� is a differential equation system written on the state variableq�xj; t�. The functionfj is
called thekinematic flux vectorandf v

j is theviscous flux vector. For the Navier–Stokes equations in
R

3 and negligible viscous dissipation,q; fj and f v
j have the definitions

q �
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The algorithm auxiliary quasi-linear Poisson PDEs have the general form

l�qa� � H
2qa ÿ sa�q� � 0 on O � R

n
; t5 t0; �14�

where

qa �
f

P

� �

; sa �
H ? u*

ÿH ? �l�u� ÿ HP�

� �

: �15�

Proceeding to the discrete form of (12), the state variablesq andqa are replaced by a continuous
approximation that assumes the separability of space and time; thus

q�xj; t� � qN
�xj; t� �

PN

i�1
Ci�xj�Qi�t�; �16�

where the function setCi�xj�, called the approximation ‘trial space’, is user-selectable. The
superscriptN in (16) denotesanyapproximate solution produced via the inner product of the known
trial functionCi�xj� and the set of unknown coefficientsQi�t�.

The weak statementis a continuum form of themethod of weighted residualsfor constraining the
error in qN . One seeks the vector functionui�xj; t� 2 H1

0 �O� and the scalar functionsf�xj; t� 2 L2
0�O�

andP�xj; t� 2 L2
0�O� such that

�

O

w�xi; t�l�qN
� dt � 0 8w 2 H1

0 �O�; �17�

where the velocity vector functionuN
i is also constrained to sit inZ, the space of weakly divergence-

free functions. The requirement that (17) must hold for any test functionw�xj; t� 2 H1
0 is enforced by

making the integral stationary with respect to any set ofWi�t�, where the interpolation ofw�xj; t� is
carried out by

wM
�xj; t� �

PM

i�1
Fi�xj�Wi�t�: �18�

This extrenum is termed a ‘weak statement’ with the form

WSN
�
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�
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wM
�xj; t�l�qN

� dt 8i;

�

�

O

Fi�xj�l�qN
� dt � 0 for 14 i4M : �19�

The optimal choice for the test function setFi�xj�, is that it be identical with the trial spaceCi�xj�.
This decision yields aGalerkin weak statement

GWSN
�

�

O

Ci�xj�l�qN
� dt � 0 for14 i4N : �20�

Mathematically, theGWSN is optimal since the approximation error inqN
�xj; t� is required to be

orthogonal to the space of functions supportingqN for any choice of trial space.
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For any approximate solution theGWSN form for (12) is
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where the Green–Gauss theorem has been applied to project the divergence operator from the flux
vectorsfj andf v

j to the approximation trial spaceCi and to produce a surface integral in (21) that is
the mathematical placeholder for allnatural boundary conditions in theGWSN .

The finite element method uses a spatial semidiscretization (or partitioning)O
h of the continuum

domainO, made up of the union of a set of non-overlapping subdomainsOe or finite elements, such
that

O � O
h
�

[

e

Oe: �22�

The approximationqN is then formed asqh, the union of finite element approximationsqe onOe, i.e.

q�xj; t� � qN
�xj; t� � qh

�xj; t� �
[

e

qe�xj; t�: �23�

On any finite element domainOe the generic form forqe is

qe�xj; t� � fNk�Zj�g
T
fQ�t�ge; �24�

where each element in the row vectorfNkg
T (called the finite elementbasis set) is akth-degree

polynomial. There are as many of these polynomials as there are nodal degrees of freedom inOe.
The indicated integrals in (21) are evaluated at the element level and the resulting element-rank

expressions are then summed (assembled) into a global matrix statement of the form

GWSh
� �M �

dfQg
dt

� fR�Q�g � f0g: �25�

In (25), [M] andfRg are a global rank square matrix and column vector respectively andfQg � fQ�t�g
is the array of the state variable approximation coefficients at the geometric nodes ofO

h. The residual
fRg is a non-linear function offQg and contains contributions from all terms in (21) except the time
term, i.e. convection, diffusion, source and boundary conditions.

For the present CCM implementation the discretization of the time derivative employs they-
implicit, one-step (Euler=trapezoidal) algorithm family. The terminal algebraic statement for (25) is
of the form

fFQg � �M �fQn�1 ÿ Qng � Dt�yfRgn�1 � �1 ÿ y�fRgn� � f0g; �26�

wheretn�1 � tn � Dt and0�54y4 1�0. A GWSN is also developed for any Poisson equation in the
CCM, directly producing the algebraic system as

fFQAg � �D�fQAg ÿ fSA�Q�t��g: �27�
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The GWSh finite element methodology has therefore produced a coupled, non-linear system of
algebraic equations that must be solved iteratively. The classical Newton method constitutes the
following iterative cycle:

fQg0
n�1 � fQgn; fFQg0

n�1 � fFQgn; for p � 0; 1; 2; . . . until convergence;

M � yDt
@fRg

@fQg

� �p

n�1

fdQgp�1
n�1 � ÿfFQgp

n�1; fQgp�1
n�1 � fQgp

n�1 � fdQgp�1
n�1:

�28�

Quasi-Newton approximations amount to the use of simplified forms of the Jacobian
�M � yDt@fRg=@fQg�.

The quasi-linear algebraic system (27) has the matrix statement

�D�fQAg � fSA�Q�t��g: �29�
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